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Irreducible representations of Brauer algebras 

Feng Pan 
Department of Physics, Liaoning Normal University. Dalian I16022, People’s Republic of China 

Received 15 lune 1994 

Abstract. hducible  representations of Brauer algebras are consmeted by using the induced 
representation and the linear equation method. As examples, some matrix representations 
of Brauer algebras Df(n) with f < 5 are presented. 

1. Introduction 

Brauer algebras [I ,  21 Df(n ) ,  which are similar to the group algebra of the symmetric group 
S’ related to the decomposition of f-rank tensors of the general linear group GL(n) ,  are 
the centralizer algebras of the orthogonal group O(n)  or the symplectic group Sp(2m) 
when n = -2m. Using the complementary relation or the so-called Schur-Weyl duality 
relation between SJ and U@), one can obtain the knowledge of the representation theory of 
U(n) ,  such as basis vectors, coupling and recoupling coefiicients from the symmetric group 
Sf [5-8]. The Brauer algebras D,(n) play a similar role for other classical Lie groups. 
More precisely, if G is the orthogonal group O(n)  or the sympletic group Sp(Zm), the 
corresponding centralizer algebra Bf(G) are quotients of Brauer’s D f ( n )  and Df( -2m) ,  
respectively [2, 41. 

On the other hand, the Brauer algebras D,(n) are a special case of Birman-Wenzl 
algebras [3]. The Birman-Wenzl algebras Cf(q, r )  appear in connection with the Kauffman 
link invariant and quantum groups of types B, C, D [4]. The Birman-Wenzl algebras 
Cf(q. T )  are a special realization of braid group. Unitary braid representations play an 
important role in the study of subfactors and in quantum field theory [15.16]. If the 
parameters q and r are not roots of unity, representations of C f ( q ,  r )  vary continuously 
with q and r .  Thus one can obtain the information about the representations of C/(q ,  r )  
from those of D,(n) for n > f - 1 or non-integer n. 

In this paper, we will outline a method for constructing irreducible representations of 
Df(n ) .  In section 2, we will briefly review the definitions and some important properties 
of D,(n). In section 3, we will outline an induced representation method for constructing 
irreps of D+). As examples, some orthogonal matrix representations of D,(n) will be 
derived by using the linear equation method (LEM) [W. The results will be presented 
in section 4. The technique developed in this paper can also be extended to the Birman- 
Wenzl algebra Cf(q, r )  case by using the results of Hecke algebra representations proposed 
previously 16-81. 

0305.4470/95/113139+18$19.50 @ 1995 IOP Publishing Ltd 3139 
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2. The algebras Df(n)  

D,(n) can be defined algebraically by 2f -2 generators {gl, gz, . . . , gj-1, el, ez. .... e,-!], 
which satisfy the following relations: 

(2.10) 

(2.lb) 

(2.k) 

(2.14 

e’ = ne; (2.le) 

(8; - 1 ) 2 k i  + 1)  = 0. Ws)  
Using the above-defined relations or by drawing pictures of link diagrams (cf [4]), we 

ei*Ig;gi+l = g;g;&lei (2.W 

can obtain the following relations which are useful for our purposes: 

(2.2b) 

(2.2c) 

It is clear that [gl , gz, . . . , gf-1) generate a subalgebra Sf, i.e. D/(n)  3 S,. 
The properties of Of(.) have been discussed by many authors [2-4,10-13]. Based on 

their results, it is known that D / ( n )  is semisimple, i.e. it is a direct sum of full matrix 
algebras over C, when n is not an integer or is an integer with n > f - 1, otherwise D / ( n )  
is no longer semisimple. Whenever D,&) is semisimple, its irreducible representations 
can be labelled by a Young diagram with f, f - 2, f - 4, . . . , 1 or 0 boxes. It can 
be seen that by removing the generators ept and gJ-1, ( g ~ ,  gz, . . . , gy-2. el, e*. . . . el-11 
generate D,-l(n). By doing so repeatedly, one can establish the standard algebraic chain 
D / ( n )  3 D ~ - l ( n )  3 . .. 3 Dz(n). We call it the standard basis of D,(n). Let r/ be the 
set of all Young diagrams with k 6 f boxes such that k 2 0 and f - k is even. As was 
pointed out in [21 and [41, if the algebra D / ( n )  is semisimple, it decomposes into a direct 
sum of the full matrix algebras Df,[Al(n). where [AI E r,. If V J A J  is a simple D j , [ ~ l ( f l )  
module, it decomposes as a D/- l (n )  module into a duect sum 

where V/ - , .L~ ,  is a simple D/-I.[&,(n) module and Ip] runs through all diagrams obtained 
by removing or (if [A] contains less than f boxes) adding a box to [Al. In what follows, 
we always assume that D,+) is semisimple. 

3. Construction of basis vectors for irreducible representations of Df(n) 

As in the symmetric group S, case, in order to label the standard basis of Df(n) ,  we need 
a set of indices [ I .  2, . . . , f). Firstly, k-time trace contraction basis vectors can be denoted 



Irreducible representations of Brauer algebras 3141 

by 
h A  - I( 1 2  3 4 .. .2k - 1 UC)(oo) = (2 + 1,2k + 2 , .  . . , f)) qe3...ew-11(123. .. f)). 

(3.1) 
Then, any normal ordered basis vectors [8] can be written as - 
I&GG..~au-iazx)(w')  = (aa+l, a2k+2 , .  . . , a f ) )  

hh - 
= Q U I (  1 2  3 4 . . . 2 k  - 1 2k)(00)) (3.2) 

where a1 e ax, a3 < Q, . . . , a%-1 .= (1%; a%+, < a%+* c ' .  . e a,, and Q, is the so- 
called order preserving permutation operators, which are also the left coset representatives 
in the decomposition 

Sf = X@QO((SZ@)~+~. (3.3) 
W 

For example, when f = 3 and k = 1, we have Q, = ( l , g l , g l g ~ ] .  The ordering of the 
sequences (w) is specified in the following way. We regard the part (wl)  = (al. ax) in 
[(alaza3a4. . . a%-laz) (0')) as a vector of length 2. If the last non-zero component of 
the vector (01) - (GI) is less than zero, then we say (U) e (G). This ordering of (0) is 
consistent with that for symmetric groups [SI. In fact, 2k indices in (3.2) are contracted. The 
remaining f - 2!i indices (azt+l,  a%+?. . . . , a,] can be assigned to a permutation symmetry 
[A], a Young diagram with f - 2!i boxes, with respect to the Sf-x action. Hence, for any 
irreducible representation of S,-%(W'), we can use orthogonal vectors {~Y~,](O'))] to label 
the standard basis vectors of Sf-,, where Yi*l is a standard Young tableau, (U') is a set 
of indices filled in YkAl, and m can be understood either as the Yamanouchi symbols or 
the indices of the basis vectors in the so-called decreasing page order of the Yamanouchi 
symbols [SI. 

As was proved in [9], the space Vpl spanned by 
A A  - ( Q U I (  1 2  3 4  ... 2 k - I  2k)YAA'(q))} 

is D,(n) irreducible. This can be proved by direct computation with the help of (2.1) and 
(2.2). Hence, the basis vectors of D,(n) irrep [A] with f - 2k boxes can be expressed 
in terms of a linear combination of the basis vectors in V,'"]. In fact, what we have 
constructed is the (Dz(n)@)XDy-D(n)  t D,(n) induced representation for the outer product 
([Ol@)'[A] t [ I \ . ] .  Vf'l is quite simply the space spanned by the uncoupled normal ordered 
basis vectors of [D*(n)@)kDf-&). 

As was pointed out in [2], the dimensions of irreducible representations of D f ( n )  can be 
computed by using Bratteli diagrams inductively. Using combinatorial method to compute 
the different ways of k-time Eace contraction among f indices, we can prove that the 
dimension formula for irreps of Df (n )  can be expressed 191 as 

(3.4) 

where [AI/-% denotes a Young diagram with f - U( boxes, and dim(Sj-u; [A]) is the 
dimension for the irrep [A] of Sf-?,, which can further be expressed, for example, by 
Robinson's formula for irreps of symmetric groups. 

It should be noted that the labelling scheme and the decomposition for D,(n) are the 
same as those for Birman-Wend algebras C f ( q ,  r )  when 4 and r are not roots of unity. 
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Thus the dimension formula (3.4) also applies to Birman-Wend albgebras Cf(q, r )  when 
q and r are not roots of unity. 

As was mentioned earlier, D,(n) contains S,C as a subalgebra. Hence an irrep [,I] of S, is 
also the same h e p  of D f ( n ) ,  in which one simply takes that ei = 0 for i = 1,2, . . . , f - 1. 
i.e. there is no trace contraction in such a representation. So we only need to discuss the 
irreps IhJf-2 of D/(n)  for k # 0. For &(n), there are vivially 3 one-dimensional irreps 
IO], [2], and [ I2 ]  with 

(3.5) 

The non-trivial cases occur when f 2 3. In what follows, we will restrict ourselves 
to integer n with n 2 f - 1. The results for non-integer n and negative n values can be 
obtained by using n-continualion and algebraic isomorphic maps, i.e. the results are also 
valid for 'any permitted n values. This will be discussed later. 

When n is a positive integer, we can use tensor products of the rank-I unit tensor 
operator of O(n)  to construct the basis of Df(n) in the standard basis explicitly. In this 
case the indices 1 , 2 , .  .,, f are used to distinguish tensor operators from different spaces. 
We also need a set of the corresponding indices it, iz.. . . , if to label the tensor components 
which can be taken as n different values, namely 

The actions of gi and e, on (3.6) are given by 

(3.7) 

(3.8) 

i.e. the generator (a) is a permutation of tensors in ith and (i + l)th spaces, while ei is a 
trace contraction of the corresponding tensor components. We assume that [i$&) spans 
a orthonormal inner product space, namely 

(3.9) 

The star operation, a conjugate linear map t, on D,(n) is defined [4] by 

g,! = g i  i = 1.2,.. ., f - I (3.10a) 

et =et i = I ,  2, .. ., f - I (3.10b) 

which are neccsssary in deriving the matrix representations of D f ( n ) .  Because of the 
contraction, the uncoupled normal ordered basis vectors given by (3.2) are no longer 
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orthonormal. For example, when f = 3, and k = 1, we have 

(3.11) 

If we relabel the above basis vectors by 

h h h 
11) = I  1 2  3) 12) = I  1 3  2) 13) = I  2 3  1) 

the norm matrix with elements (ilj) = { j l i )  for 1 < i ,  j < 3 is just the matrix of Tz.1 
defined by Hanlon and Wales [lo]. 

In what follows, we will use the induced representation (D~(n)@) 'Df -%(n)  t D f ( n )  
for the outer product ([O]@)'[A]) t [A] to derive the irreducible representations of D / ( n ) .  
The basis vectors of [A],-u is denoted by 

(3.12) 

where (W) = (1,2, . . . , f - p ) ,  and [@I can be taken as a Young diagram obtained by 
removing or (if [A] contains less than f boxes) adding a box to [A]. By repeatedly doing so 
to p steps, there always exists a Young diagram [U] with f - p boxes which corresponds 
to an irrep of Df-&). Thus [ U ]  is identical to the same irrep of S,-p. So the labelling 
scheme of the remaining part can be assigned to a standard Young tableau Ykl with f - p 
indices (1,2, . . . , f - p ) .  

For example, for the irrep [I] of D&), we have three basis vectors 

(3.13) 

under the standard basis &(n) 3 Dz(n). 
We will now use the linear equation method [SI to derive the irreducible representations 

of D / ( n )  inductively. Firstly, the results of generators (gl, gz, ..., gf-1, el ,  e?. . . . , e f - 1 )  
acting on (3.2) can be found directly by using the algebraic relations given by (2.1) and 
(2.2), and the standard results of the symme@ic groups which are required when both i and 
i + 1 are in the Young tableau YiA1. Secondly, we assume the mairix representations of 
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D/-i(n) 3 Df-z(n) 3 ... 3 Ddn) are completely known. The basis vectors for 
of D,(n) can be expressed as 

(3.14) 

where the Clol~lAlm,o, are the induction coefficients (loa) of (D&z)@)kD,-a(n) ?. D,(n) 
for the outer product ([O]@)'[h] t [I], which need to be determined, and p = [p]  . . . [ p ] .  
The DCS satisfy the following orthogonality relations: 

[Alj-wlW 

= 6pp'6 lv l [v ' l~hfM'  (3.15) 

where we have assumed that the basis vectors of D,(n) 3 D,-r(n) 3 . . . 3 &(n) given 
by (3.12) are orthonormal, i.e. 

= 6,,*SPP.. . . G""'S&f.+f'. (3.16) 

This coincides with the results of symmetric groups when the irrep [I] of Dr(n) has f 
boxes. 

Applying the operators Ri (= gi or e j )  with i = I ,  2, . , . , f - 2 to (3.14), the left-hand 
side of (3.14) becomes 

C ~ ~ ~ ~ ~ j ( ; ; ' l l , ~ ( ~ I l p [ ~ l M ~ R i ~ [ I l p ' [ ~ ' l M ' )  Q,l( 1 2 3 4 " , 2 k  - 1 U c ) Y ~ ~ l ( ~ o ) ) .  
h A  - 

wmp'lv'lM' 

(3.17) 
While the right-hand side of (3.14) becomes 

(3.18) 

Combining (3.17) and (3.18). we get 

(3.19) [AIP'Iu'IM' IAIP[vIM C l o ] . l ~ ] ~ . ~  ([IIp[vlMI Ri I[~l~'[v'lM') = C[ol,[Alm,,dh 
P'lV'lM' 

where Clol,lAim,,d~ [ A I P I W  is the coefficient in front of 
6-  I 

Qol( 1 2  3 4  ...Uc - 1 u C ) Y t l ( ~ o ) )  

after applying Ri to the right-hand side of (3.14). 
The number of independent basis vectors given by (3.14) and those by (3.2) all equal 

to dim([I],-z*; Df(n))  given by (3.4). For a given irrep [ h l p u ,  there are [dim([h]f-u; 
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Dj(n))]' IDCs. Equation (3.19) will yield 2(f - l)[dim([A]f-n; Dj(n))lZ linear relations 
among the IDCS. As in the Hecke algebra H,(q) case [8], there are many redundant relations 
among IDCs. However, using equation (3.19) together with the orthogonality relations (3.15), 
we can establish [dim([A]~-n; Df(n ) ) lZ  sufficient relations among these IDCs, which can 
be used to solve them. 

In the calculation, the relative phase of the ID- is determined completely by (3.15), 
and (3.19). while the overall phase is fixed by requiring that the IDCS with m = M = 1 and 
with smallest possible index U be positive 

(3.20) 
This phase convention is consistent with that for symmetric groups 151. 

Once these IDCS are known, the orthonormal basis vectors given by (3.14) are completely 
determined. The matrix representations of RJ-1 (= gf-1 or e r - ] )  can then be derived by 
directly acting Rf-1 on (3.14) with the known matrix elements of Rf-I  under the uncoupled 
normal ordered basis (3.2). Using this method and starting from the results given by (3.3, 
one can obtain the matrix representations of D f ( n )  under the standard basis. In what 
follows, we will give an example to show how this method works. 

Example. Deriving matrix representations of Ds(n). The irreducible representations of 
&(n) with three boxes are the same as those of S3. We only need to derive the three- 
dimensional irrep [I]. The process consists of the following steps: 

Step 1. Write the basis vectors of 4 ( n )  in terms of uncoupled normal ordered basis vectors 
with I-contraction, and calculate the norm matrix elements 

IAl~lvlM=l 
CIOl.lAlm=l.o=min ' O' 

where li) (i = 1, 2, 3) are given after (3.1 11, and ai, b, and ci are the corresponding IDCS. 
The norm matrix with elements (ilj) for 1 < i, j < 3 is 

( 1  f i ) .  (3.22) 

Applying generators g, and el, 

f 0  a2=O a 3 = O  (3.23a) 

bi f 0 bz = 63 = --bi (3.236) 

CI = o  CZ = -cj.  (3.23~) 

Step 2. 
respectively to (3.21), we obtain 

Derive the linear relations among the IDCS. 

n 
2 

Thus, we have 

(3.24) 
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where 8, = 0, 8b = 1 and 6, = 1 according to our phase convention. The norm factors a], 
bt, and CI can easily be derived by using the norm matrix obtained in step 1. 

a 1 = 8  b ~ = , / ~  n(n + 2)(n - 1) CI = ,/‘ - 2(n - 1 ) ’  (3.25) 

Step 3. Derive the matrix representations of gz and e2 under the standard basis of &(n). 
Applying gz to (3.24) and using the relations given by (2.1) and (2.2), one has 

While applying e2 to (3.24). one has 

Hence, one obtains the three-dimensional imp [l] of &(n) under the standard basis 
&(n) ZI Dz(n). The results are given in (4.2). 
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4. Some matrix representations of Df(n)  under the standard basis 

In this section, we will list some irreducible matrix representations of D,(n) under the 
standard basis, which are derived by using the method outlined in section 3. All the irreps 
with f boxes, i.e. there is no trace contraction, are omitted here because they are indentical 
to the symmetric group S, case with e, = 0 for i = 1, 2, . . . , f - 1. The results for f < 4 
and two examples with f = 5 are presented. However, the dimension of the irreps will 
increase rapidly with increasing of f. In this case, one can derive the results with the help 
of a computer running Mathematica For example, two ten-dimensional irreps of Ds(n)  
were derived by using this facility. 

I .  f = 2, [A] = [O] with dim = I .  The uncoupled normal ordered basis vector is 11) = 
el l(12)) with (11 I )  = n .  The orthonormal basis vector is 

The matrices of the generators are 

gt = 1 el = n. 

( 4 . 1 ~ )  

(4.16) 

2. f = 3, [A] = [ I ]  with dim = 3. The uncoupled normal ordered basis vectors, norm matrix, 
and the orthonormal basis vectors have already been given in section 3.  The mairices of 
the generators gz and e2 are 

( 4 . 2 ~ )  

(4.2b) 

3. f = 4, [A] = [O] with dim = 3. The uncoupled normal ordered basis vectors are 

11) = e m  1WW 12)=gzl l)  13) = g l g z  11). (4.30) 
The norm matrix is 

(; i' n , ) .  (4.36) 

The orthonormal basis vectors are 

(4.3c) 
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The matrices of 8 3  and e j  are 

(4.34 

l O l l n l  
O l l I l n  

The orthonormal basis vectors are 

(4.4b) 

(4.4c) 
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5. f = 4, [A] = I l l ]  with dim = 6. The uncoupled normal ordered basis vectors are 

(4.5b) 



The matrices of g3 and e3 ate 

g3 = 

(4.54 

6. f =  5, [hJ = 131 with dim = IO. The uncoupled normal ordered basis vectors are 
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( n  1 1  1 1  0 1 1  0 0 
l n l l O l l O l O  
l l n O l l O l l O  
l l O n l l l O O l  
l O l l n l O l O l  
O l l l l n O O l l  
l l O l O O n l l l  
l O l O l O l n l l  
O l l O O l l l n l  

\O 0 0 1 1  1 1  1 1  n 

The norm matrix is 

(4.6b) 

The orthonormal basis vectors are 
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ea= 

fi) =/7[2[1)-12)-13) 6n(n - 2)(n + 1) 

0 0 0  0 0 0  0 0 0 0  
0 0 0  0 0 0  0 0  

0 0 0  0 0  /e -/+&ET 0 0  

o o o / - o ~  -/-oo 4 w H 4 j  

0 0 0  0 0 0  0 0 0 0  
o o o  0 0  0 0 0 0  . 

0 0 0  -/- o o - / -  ? a s p 1  0 0  

0 0 0  0 0 0  0 0 0 0  

t 14) + 15) - 2 16) - n(17) + 18) - 2n 19))) I fi ) = ,/T 2n(n - 2)(n + I )  (12) - 13) + 14) - 15) - 216) - n (17) - 18))) 

The matrices of g4 and e4 are 

g4 = 
' 1  0 0 0 0 0 0 0 0 0 
0 1 0  0 0 0 0 0 0 0 
0 0 1  0 0 0 0 0 

0 0 0  j$f& 0 0 



The norm matrix is 

' n  1 1 -1 -1 0 ' 1  1 0 0 
1 n 1 1  0 - 1 - 1 0  1 0  
1 1  n 0 1 1  0 - 1 - 1 0  

-1 1 0  n 1 - 1  1 0  0 1 
- 1 0  1 1  n 1 0  1 0 - 1  
0 -1 1 - 1  1 n 0 0 1 1 
1 - 1 O l O O n 1 - 1 1  
1 0 - 1 0  1 0  1 n 1 - 1  
0 1 - 1 0 0 1 - 1 1 n 1  

, O  0 0 1 -1 1 1 -1 1 n 

(4.7b) 

The orthonormal basis vectors are 
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0 0 
0 0 
0 0 

0 0 

-)PggF m 

m113e ,"-lo 

0 0 

0 0 

The matrices of g4 and e4 are 

g4 = 
/ -1  0 0 

0 - I  0 
0 0 -I 
0 0 0  

0 0 0  

0 0 0  

0 0 0 -  

0 0 0  

0 0 0  

0 0 0  

0 0 0 
0 0 0 
0 0 0 
zi 0 0 

0 25 0 

0 0 &i 

.- 0.2) 0 0 

0 -- 0 
0 0 -e 

pq 
41"- I 0 0 

0 
0 
0 

- p z F  
0 

0 

-x 
0 

0 

0 

I 

0 
0 
0 
0 

-- 8-2)  

0 

0 

-A 
0 

0 

(4.7c) 
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0 0 0 0 0  0 0 0  0 
0 0 0 0 0  0 0 0  0 
0 0 0 0 0  0 0 0  0 

0 0 0 0 0  0 0 0  0 0 

3155 

I 0 0 0 0 0  0 0 0  0 ' I  i 0 0 0 0 0  -&g 0 0  /q$ 9 

0 0 0 0 0  0 0  0 

0 0 0 0 0 - & o o  * 

From the above matrix representations of D f ( n )  generators, one can check that the 
representations are always faithful with n-continuation, except for It E {f - 2. f - 
3, .. . , I ,  0) or for -n E {f - 1, f - 2, .. . , 1, 0) when n is negative. At these 
integer n values, the representations will become either unfaithful or indefinite, because in 
the latter case the denominators of some matrix elements of gi and e, will become zero. 
This is consistent with the conclusion made by Wenzl [Z], and independently by Hanlon and 
Wales [IO] that the representations of D f ( n )  will no longer be semisimple when n > f- 1. 
Whenever n 2 f - 1 and -n > f - 1 for negative n, our results apply to any other 
permitted n values as well. It can also be verified that the above matrix representations of 
D f ( n )  are symmetric, and {g;;  i = 1. 2, . . . , f - l} are orthogonal. 

In order to discuss the algebra B f ( G )  [14], where G = O(n)  or Sp(2m), we need 
a special class of Young diagram, the so-called n-permissible Young diagrams defined in 
[2]. A Young diagram [A] is said to be n-permissible if !',(a) # 0 for all subdiagrams 
[/L] < [A], where P,(n) is the dimension of O ( n )  for the irrep [@I, of which the formula is 
given by 1121, and a Young diagram [@I is a subdiagram of the Young diagram [A], denoted 
by [p]  < [A], if [@I can be obtained from [A] by taking away appropriate boxes. 

The relation between D f ( n )  and B f ( O ( n ) )  or Bf(Sp(2m))  was discussed in [2], in 
which the following corollary is of importance: 

(i) If n E C is not an integer, all Young diagrams are n-permissible. In this case 
D f ( n )  E B f ( n )  and its decomposition into full matrix rings is the same as those for 
D f ( n ) .  

(ii) If n is a non-zero integer, a Young diagram [A] is n-permissible if and only if: 
(a) Its first 2 columns contain at most n boxes for n positive. 
(b) It contains at most m columns for n = -2m a negative even integer. 
(c) Its first 2 rows contain at most 2 - n boxes for n odd and negative. 

B f ( O ( 2  - n) ) .  For n = -2m c 0, By(") is isomorphic to Bf(Sp(2m)) .  

It was proved in [Z] that the generators [ g i ,  61 of Bf(2m)  are compactible with the 
relations for [-gi, - e ; )  of &(x) with x = -2m. Hence, gi H -it. ei H - &  define 
a representation of Df(-Zm),  of which the image is Bf(Sp(2m)) .  Thus, making the 
replacements gi 4 -2;. e; + -&, and n + -2m in the above representations of D,(n), 
we can obtain the matrix representations of Bf(Sp(2m)) .  In this case, an irrep [A] of 
Df(-2m) is the irrep 1x1 of B/(Sp(Zm)),  where [I] is the Young diagram conjugate to [A]. 

(iii) If n is a positive integer, B f ( n )  Y B f ( O ( n ) ) .  If n is negative and odd, B,(n) = 
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5. Concluding remarks 

In this paper, the irreducible matrix representations of Brauer algebras D,(n) are constructed 
by using the induced representation and the linear equation method, Some matrix 
representations of Dj(n)  for f < 5 are presented. Higher-dimensional representations 
of D,(n) can also be derived by using this method. The results are lengthy, and not 
presented here. As with the Schur-Weyl duality relation between Sj and GL(n), the results 
may be useful in studying the representation theory of O(n)  and Sp(2m) in concerning to 
the coupling and recoupling problems of these representations, which are now under our 
consideration. 

This technique can also be extended to the Birman-Wenzl algebra C f ( q ,  r )  case by using 
the results of Hecke algebra representations [6-81. Work in this direction is in progress. 
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